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combined with visible resonance Raman (VRR) spectroscopic method, for the ¯rst time, to
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of brain tissues were obtained using a confocal micro-Raman spectroscopic system. VRR spectra
of the corresponding samples were synchronously collected using excitation wavelength of 532 nm
from the same sites of the tissues. Using SFSA method, the di®erence in the randomness of spatial
frequency structures in the micrograph images was analyzed using Gaussian function ¯tting. The
standard deviations, � calculated from the spatial frequencies of the micrograph images were then
analyzed using support vector machine (SVM) classi¯er. The key VRR biomolecular ¯ngerprints
of carotenoids, tryptophan, amide II, lipids and proteins (methylene/methyl groups) were also
analyzed using SVM classi¯er. All three types of brain tissues were identi¯ed with high accuracy in
the two approaches with high correlation. The results show that SFSA–VRR can potentially be a
dual-modal method to provide new criteria for identifying the three types of human brain tissues,
which are on-site, real-time and label-free and may improve the accuracy of brain biopsy.

Keywords: Spatial frequency spectroscopy analysis (SFSA); visible resonance Raman (VRR);
human brain; metastatic lung cancer; photomicrograph image; support vector machine (SVM).

1. Introduction

Human brain tumors appear regardless of color and
age. Brain tumors may arise from a brain's internal
tissue (primary brain and central nerve system
(CNS) tumors) or external metastases to the brain
(metastatic brain tumors). Nearly 700,000 people in
2018 were living with a primary brain and CNS
tumor in the USA.1

The primary origin of brain cancer is brain neo-
plasm cells. The secondary or metastatic brain
tumors, which have spread to the brain or cerebel-
lum from another location (organ) in the body, are
much more common than primary brain tumors.
They are the most common brain tumors in adults.
Metastatic brain tumors make up about one-fourth
of all cancers that spread through the other organs
of body. The cerebellum is the part of the brain that
watches over complex muscle movements. About
15% of metastatic brain tumors develop in cerebel-
lum, while about 85% of metastatic lesions are lo-
cated in the cerebrum. The cancers spread to the
brain are commonly from lung, breast, colon, kid-
ney, melanoma, thyroid and uterine. The cancer
cells of these organs broke free of primary cancer,
travel through blood and spread to the brain and
grow into the new tumors. The brain metastases of
lung cancer are the most common forms of meta-
static brain tumor. In fact, lung cancer staging is
often found in brain lesion scan before the primary
lesion in lung. Approximately 173,770 cases of lung
cancer were diagnosed in the US in 2004 with an
estimated 160,440 deaths.2 Small cell lung cancer
(SCLC) accounts for approximately 20% of all cases
of lung cancers.3 It tends to disseminate earlier

during its natural history than non-SCLC (NSCLC)
and is clinically more aggressive.4

The conventional diagnosis of brain lesions is
performed using biopsy and histopathology. This
gold standard method requires freezing specimen or
reagent preparation for the biopsy tissue prior to
microscopic analysis. This requires skilled techni-
cians and histopathologic experts to perform the
diagnosis as well as considerable time before results
become available. The subjective nature of the his-
tological evaluation is associated with considerable
intra- and inter-observer variation in grading the
biopsy tissues, which strongly depends on the ex-
perience of the medical doctors. Magnetic resonance
imaging (MRI) provides preoperative information
about the localization, size and molecular-level
biochemical components of the tumor. However,
some information is lost during surgery due to tissue
changes, e.g., pro¯le shifts, which is the largest con-
cern of the surgeons. In addition, MRI and computed
tomography (CT) are expensive non situ detection
methods that have several disadvantages, such as
time-consuming and in°exible.5,6 Therefore, it is of
importance to develop an objective and noninvasive
method that can be used for precancerous diagnosis
and can be used during clinical practice of surgery.

Optical spectroscopic techniques (e.g., Raman
and °uorescence) have demonstrated their advan-
tages of being real-time, in situ and label-free in
biomedical applications. Since the ¯rst report of
optical spectroscopic technology used to di®erenti-
ate human lesions from normal tissues,7–9 optical
spectroscopic techniques have become a major
thrust as a potential noninvasive tool to detect

Y. Zhou et al.

1950010-2

J.
 I

nn
ov

. O
pt

. H
ea

lth
 S

ci
. 2

01
9.

12
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 H

U
A

Z
H

O
N

G
 U

N
IV

E
R

SI
T

Y
 O

F 
SC

IE
N

C
E

 A
N

D
 T

E
C

H
N

O
L

O
G

Y
 o

n 
04

/1
4/

19
. R

e-
us

e 
an

d 
di

st
ri

bu
tio

n 
is

 s
tr

ic
tly

 n
ot

 p
er

m
itt

ed
, e

xc
ep

t f
or

 O
pe

n 
A

cc
es

s 
ar

tic
le

s.



changes in the state of tissues and obtain molecular
information. Among them, Raman spectroscopy has
been widely used for diagnostic purpose. Recently,
native biomarker using Raman spectroscopy was
reported in studies of aggressive brain cancers.10–16

A visible resonance Raman (VRR) spectroscopy
method, in recent years, was shown to have
advantages over the conventional Raman technol-
ogy due to the following reasons: (1) VRR has some
unique features. For instance, more resonance
Raman (RR) intrinsic biomarkers were observed
that have been generated from multiple vibrational
modes of larger biomolecules due to resonance
Raman using visible 532 nm excitation which mat-
ches many biomolecular electronic transition levels
in tissues, cells and organelles. (2) VRR signal in-
tensity may be enhanced 102 to 103 times while
operating in situ in a time period of seconds.
(3) VRR-enhanced signal from vibrational chemical
bonds of molecules can be detected at molecular
concentrations less than 1.0 nM and the activity
of particular molecular species can be targeted
preferentially. VRR provides an e®ective way to
enhance Raman signal from particular chemical
bonds associated with key molecules and detect their
changes at a molecular level, such as carotenoids,
tryptophan, amides, lipids and protein in breast,
skin, heart, gynecologic and brain lesions.14,15,17

These advantages of VRR have led to a rapid prog-
ress in its applications in brain and other human
cancer diagnosis14,17–21 that are di±cult to achieve
by conventional nonresonance Raman method.22–27

Recently, another new optical spatial frequency
spectroscopy analysis (SFSA) method was intro-
duced based on Fourier spatial frequency spectrum
analysis of the underlying structure pattern of tis-
sues. The spatial frequency of the structure has been
used to analyze microscopic images of cervical
cancer at di®erent grades to obtain the information
of the periodic and random structures of the tis-
sues.28–30 The images of certain types of tissue
sample contain intensity patterns of the underlying
structures, which can be considered as a composi-
tion of di®erent spatial frequencies. Spatial fre-
quency spectral analysis method can be used to
convert the spatial structure of recorded optical
intensities in the images into spatial frequency
spectra, analogous to the Fourier decomposition of
color frequency spectra with both being frequency-
domain analysis.31 Most importantly, the result of

SFSA is a function of the underlying structure of
the tissue and can therefore give a truly objective
picture of pathology.

This study focuses on analyzing the micrograph
images and VRR spectra to ¯nd key markers to
di®erentiate human brain metastasis of lung cancer
including adenocarcinoma (ADC) and squamous
cell carcinoma (SCC) from normal tissues using
dual optical modalities of SFSA–VRR, synchro-
nously, in situ, ex vivo, in real time. The criteria
for identi¯cation of the three types of brain tissues
will be created using SFSA–VRR method. The
SFSA–VRR method may have potential for new
applications in neuropathology diagnosis and brain
surgery.

2. Materials and Methods

Specimens: Human tissues of brain metastases of
lung cancer and normal brain tissues were obtained
from the Air Force Medical Center, PLA, Beijing,
China. All the specimens of brain metastases of lung
cancer tissues were carcinomas. Two major sub-
types of brain metastasis from lung cancer were
used including ADC and SCC. ADC specimens from
¯ve patients and SCC specimens from three
patients and one normal brain tissue specimen from
a noncancer carrying patient were diagnosed. The
histopathology reports of metastatic brain tumor
and normal brain tissues based on standard pa-
thology and immunohistochemistry methods were
obtained for each specimen. According to the stage
classi¯cation, all investigated tumors are distant
cancer metastases with stage IV (The international
standard for classi¯cation and nomenclature of his-
tology is the International Classi¯cation of Diseases
for Oncology-ICD-O-3).32 The experimental proce-
dures were approved by the committee of the Air
Force Medical Center, PLA, Beijing, China.

Micrograph images: 30 micrograph images of
metastatic brain tumors and normal tissues (4 from
normal tissue, 26 from cancerous tissues) were
recorded as bright-¯eld re°ectance images with
white light illumination. Typical micrograph images
are shown in Figs. 1(a)–1(c). All images were taken
under identical conditions. The micrograph images
were obtained label-free using the confocal Raman
microspectroscopic system, i.e., Jobin Yvon confocal
micro-Raman spectrometer (JY-HR-800 France)
with image resolution 500�m� 380�m, and image
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size 538 pixel� 403 pixels. The micrograph images
were recorded before and after VRR data collection
in order to con¯rm the stability and repeatability of
the micrograph images.

VRR spectral measurements and Raman instru-
ment: 30 VRR spectra were recorded from the same
sites of the specimens where the micrograph images
were acquired synchronously. Each brain cancerous
tissue was identi¯ed by traditional pathology using
H&E (hematoxylin and eosin) and immunohisto-
chemical assay as the gold standard (Figs. 1(g)–1(i)).
VRR spectra were acquired using confocal micro-
HR800 Raman spectrometer with 532 nm excitation

wavelength. The detailed description of the instru-
ment was previously reported.10,18 The excitation
light beam was directly shed on the surface of the
samples. The spot diameter of the focused laser
beam at the sample position is about 1�m. The
laser power at the sample position was 0.9mW and
the typical integration time was 30 s. All spectra
were acquired at room temperature. The ¯nal
spectral resolution was 2 cm�1 in the range of
interest from 200 to 4000 cm�1. The micrograph
images and VRR spectra were then analyzed
and compared to the pathology and immunohis-
tochemistry reports.18

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 1. Three sets of data from brain metastases of lung cancer and normal tissue. Upper row: A set of typical cropped confocal
micrograph images using pseudo color of (a) normal brain tissue, (b) brain metastasis from ADC, and (c) brain metastasis from
SCC. Middle row: A set of RR spectra of (d) normal brain tissue, (e) brain metastasis from ADC and (f) brain metastasis from SCC.
The spectra in (d)–(f) are corresponding to the images in (a)–(c), respectively. Bottom row: H&E-stained images from (g) normal
brain tissue, (h) brain metastasis from ADC and (i) brain metastasis from SCC. All the H&E images used 20� objective and
correspond to the images in (a)–(c), respectively.
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The basic principle of SFSA: In this paper, the
micrographic images (Figs. 1(a)–1(c)) from human
brain cancer and normal tissues ex vivo, di®er from
the pathology biopsy images (Figs. 1(g)–1(i)), and
were analyzed using SFSA method as described in
Refs. 28–30. The current study focuses on human
brain metastases of lung cancer. Usually, the
intensity distribution of the micrographic image can
be expressed as Fourier Transform (FT)31:

fðx; yÞ ¼
X1
u¼0

X1
v¼0

au;v cos
2�ux

Lx

þ 2�vy

Ly

� ��

þ bu;v sin
2�ux

Lx

þ 2�vy

Ly

� ��
; ð1Þ

where u and v are the numbers of cycles of fðx; yÞ
with periods Lx and Ly in the x- and y-directions,
respectively. Discrete FT (DFT) is generally used to
convert the two-dimensional (2D) spatial intensity
distribution function fðx; yÞ to the 2D spatial
spectrum F ðu; vÞ by sampling with a ¯nite extent
N �N :

F ðx; yÞ ¼ 1

N

XN�1

x¼0

XN�1

y¼0

fðx; yÞ cos
2�ðuxþ vyÞ

N

� ��

þ j sin
2�ðuxþ vyÞ

N

� ��
: ð2Þ

The magnitude of spectra, jF ðu; vÞj, is calculated
by15

jF ðu; vÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2ðu; vÞ þ I 2ðu; vÞ

p
; ð3Þ

where Rðu; vÞ and Iðu; vÞ are the real and imaginary
parts of the spatial frequency spectrum, respectively.

Implementation of SFSA: Images of human nor-
mal brain tissues and brain tissues of metastases
from lung cancers obtained from confocal micro-
graph were analyzed using Fast FT (FFT) to
generate the spatial frequency spectra. Further
processing of the spatial frequency spectra allows
the extraction of underlying information of the
tissue structure.

3. Results and Discussion

Identi¯cation of human normal brain tissues and
brain tissues of metastases from lung cancer by
VRR (1): Three sets of data collected from repre-
sentative brain metastases of lung cancers
(ADC and SCC) and normal tissues are displayed
in Fig. 1, including (a) the micrograph images

(top row), (b) the VRR spectral data measured
synchronously with the micrograph images (middle
row) and (c) microscopic images for histopathology
diagnosis with H&E stains (bottom row).

VRR spectral ¯ngerprints of carotenoids for
ADC and SCC (1): The typical three types of VRR
spectra from normal human brain tissues and brain
metastases of lung cancers (ADC and SCC) are
shown in Figs. 1(d)–1(f), respectively. VRR spectra
of key ¯ngerprints from healthy brain tissues in
Fig. 1(d) display eight major peaks at 1005, 1157,
1521, 1438, 1667, 2850, 2885, 2932 cm�1, respec-
tively. The relatively sharp and enhanced peaks of
1157 and 1521 cm�1 are supposed to arise from
carotenoids, low-density lipoprotein (LDL) and
high-density lipoprotein (HDL). RR peaks at 1438,
2850 and 2885 cm�1 for rich fatty acids are stronger
than protein bands at 1005, 1667 and 2934 cm�1 in
peak intensities. The resonance-enhanced intrinsic
molecular ¯ngerprints are supposed to mainly arise
from carotenoids with intense RR modes at
1157 cm�1 (�s(C–C)), 1521 cm�1 (�s(C¼C)) and
1008 cm�1 (�(C– H3Þ, �(C–C)) and major overtone
peaks at 2320 and 2667 cm�1. Carotenoids play a
signi¯cant role in normal brain tissues33–41 and act
against the destructive e®ect of the free radicals.
The speci¯c importance of carotenoids is to serve as
a marker substance for the entire anti-oxidative
network of human brain tissues.42,43

In contrast, in brain cancers, peaks of carotenoids
at 1161 and 1521 cm�1 are occurring but obviously
weaker for ADC and signi¯cantly lower or tend to
disappear for SCC compared with normal tissue.
We proposed that the dependence of the RR spectra
of biomarker carotenoids on the tissue types (ADC
and SCC) revealed the di®erence between the types
and the status of each type. Our measurements
found that these two resonance bands of 1157
(1161) cm�1 and 1521 cm�1 are active because
carotenoids have a pre-resonance absorption band
around 480 nm and the excitation wavelength of
532 nm falls in this pre-resonance range. The in-
tensities of RR peaks of 1157 and 1521 cm�1 de-
creased as the type of brain cancer changes from
normal to cancerous. This may indicate a progres-
sion of di®erent mutation processes. The RR peaks
of 1157 and 1521 cm�1 diminish sharply for SCC
brain tissues (Fig. 1(f)). The suggested reason was
that the content of carotenoids decreased, which
caused the RR peaks to become too weak to
detect or induced a shift in chemical vibration
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bands. This may be due to the structural changes
within the microenvironment of malignancy. Car-
otenoids are natural fat-soluble pigments with the
reduction of fat. For instance, the peak 1521 cm�1

drastically decreases with the decreasing content of
saturated fatty acid lipids (1442 and 2850 cm�1Þ.
All these observations indicate the existence of a
fast activation and deactivation of Raman vibra-
tional modes at 1521 and 1157 cm�1 in the types of
ADC and SCC brain tissues.18 RR modes of 1157
and 1521 cm�1 could be a signi¯cant marker to di-
agnose metastatic brain cancerous tissues and other
cancers.44,45

VRR spectral ¯ngerprints of tryptophan for ADC
and SCC (2): The key ¯ngerprint of tryptophan
molecules with a main vibrational mode at
1587 cm�1 (W8b) was observed in the RR spec-
tra.46–48 It was found that endogenous tryptophan
and metabolites contributions were accumulated in
brain metastases of lung cancer tissues, and the RR
vibrational mode at 1584–1587 cm�1 in malignant
ADC and SCC (Figs. 1(e) and 1(f)) was enhanced in
intensities by resonance. Researchers have reported
that heterocyclic amino acid tryptophan is a key
factor during the metabolic process in human brain
tissues.49–54 This RR vibrational mode of 1587 cm�1

indicates that tryptophan is produced in human
metastatic brain tumor of lung cancer and the
kynurenine pathway of tryptophan metabolism is
involved in brain tumor progression.46 These
observations are in good agreement with changes of
tryptophan contents in human brain malignant
meningioma and gliomas tissues10 and skin basal
cell carcinoma tissues.19 The molecular biomarker of
tryptophan provides a potential approach to diag-
nose metastatic brain cancerous tissues and other
cancers.

VRR spectral ¯ngerprints of lipid and protein for
ADC and SCC (3): The VRR peaks of protein
(2934 cm�1Þ gradually increased in di®erent types of
metastatic brain tumors of lung cancer (ADC and
SCC) in comparison with normal brain tissues
shown in Figs. 1(d)–1(f). The RR mode of
2885 cm�1 (2850 cm�1) is correlated with the lipid
content and fatty acids of lipids which have intense
contributions in normal bran tissues. The increase
in the intensity of methyl (–CH3) and decrease in
the intensity of methylene (–CH2–) (protein and
lipid, both showing symmetric stretch modes of
2934 and 2850 cm�1, 2885 cm�1) were observed in
both types of metastatic brain tumor tissues of

ADC and SCC. The ratio of RR peaks of protein to
lipid (I2934 cm�1/I2885 cm�1) is shown as normal: ADC:
SCC to be 0.81: 0.87: 1.31, respectively. The ratio of
RR peaks of protein to lipid (I2934 cm�1/I2851 cm�1Þ is
shown as normal: ADC: SCC to be 0.84: 0.94: 2.80,
respectively. The result of these ratios reveals the
changes of compositions of the macromolecules
(e.g., lipids and proteins) during the evolution of the
types of brain metastases of lung cancers of ADC
and SCC. The lipid (2850 and 2885 cm�1Þ content
decreased in malignant ACC and SCC sharply
(shown in Figs. 1(e) and 1(f)). This result is well
consistent with the previous reports of Raman
spectra of glioblastoma multiforme (GBM) and basal
cell carcinoma ex vivo.10,18,19 The ratios serve as a
key approach to predict the metastatic potential of
brain cancer using VRR spectroscopy analysis.

VRR spectral ¯ngerprint of amide II for ADC
and SCC (4): Another important feature indicated
by Figs. 1(d)–1(f) is the increase of the protein line
in the amide II active bond at 1548–1554 cm�1 in
ADC and SCC in comparison with normal brain
tissues. Intense resonance enhancement of
1555 cm�1 band in SCC cancer and less increase in
ADC cancer were observed. It reveals biomarker
amide II and is important to di®erentiate ADC and
SCC from normal brain tissues. Amide II is one of
the nine amide bands of protein and was also reso-
nance-enhanced in gliomas and meningeal cancers
due to 532 nm-excited amide II vibrational
mode.10,17,18 Usually, the amide II band is weak or
absent in the non-RR system.

Identi¯cation of human normal brain tissues and
brain metastases of lung cancer by morphology (5):
The images of Figs. 1(a), 1(g), 1(b), 1(h) and 1(c),
1(i) were taken from intracranial brain region of
normal tissue and metastatic brain tumor of lung
cancers of ADC and SCC, respectively. In the
images of the normal brain tissue shown in Figs. 1(a)
and 1(g), the main compositions such as proteins,
lipids and lipoproteins, which make up neuronal
and glial cells, are more ordered in layers and uni-
form in shape and size while these ordered features
di®er in cancer tissues. This can be observed in the
images of ADC in Figs. 1(b) and 1(h) and SCC in
Figs. 1(c) and 1(i), which display a periodic, but
random, anti-symmetrical, and disordered struc-
ture. These features were also observed in prostate,
breast and other types of tumors.55–57

The microscopic images with H&E staining used
for the gold standard histopathology diagnosis are
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shown in Figs. 1(g)–1(i). It indicates that Figs. 1(h)
and 1(i) for cancerous tissues lack normal tissue
structure as shown in Fig. 1(g), and the brain cancer
of ADC shown in Fig. 1(h) demonstrates points of
gray–red tissues. Moreover, a few atypical cells can
be seen among a large piece of necrotic tissue for
SCC in Fig. 1(i), indicating that gray–red precipi-
tate and metastatic-di®erentiated SCC is associated
with necrosis in brain cancer tissues.

Identi¯cation of human normal brain tissue and
brain metastases from lung cancers by SFSA (6):
The analyses of the spatial frequency distribution by
SFSA: In Fig. 2, the 2D spatial spectra were
obtained using DFT in Eq. (2). By sampling with
N ¼ 512, where N is a ¯nite sampling extent,
Figs. 2(a)–2(c) display the typical 2D amplitude
spectra of normal, ADC and SCC of brain tissues,
respectively. For visualization purpose, the ampli-
tude spectra shown in Fig. 2 are exhibited as loga-
rithms of original amplitudes28 and linearly mapped
in the color range of [0, 255]. One-dimensional (1D)
spatial frequency spectra (dot lines) through the
peaks of the 2D amplitude spectra and their corre-
sponding ¯tted Gaussian distributions (solid lines)

are shown in Fig. 2 for (d) normal tissue, (e) ADC
and (f) SCC.

The dominant amplitude of the spatial frequency
spectra is close to the origin (u ¼ 0, v ¼ 0) and
decreases in all directions away from the center.31

These typical results of spatial frequency distribu-
tion clearly show strong signal at low spatial fre-
quencies, but weak signal at high frequencies. These
di®erences are also displayed in the 1D frequency
spectra in Figs. 2(d)–2(f) that are generated from
data shown in Figs. 2(a)–2(c). The results indicated
a di®erence between the two classes of brain tissues
including normal and cancerous tissues (with two
subtypes of ADC and SCC). It is shown that higher
frequency components are more contributive in
brain cancerous tissues than in brain normal tissues.
The SFSA results from Fig. 2 are summarized as
follows: for the normal tissue, the lower frequency
amplitudes mostly dominate over the mid-range
and high-frequency range as shown in Fig. 2(a).
However, the amplitude of mid-range and high-
frequency range can be clearly perceived with the
evolution from normal tissue in Fig. 2(a) to ADC in
Fig. 2(b) and SCC in Fig. 2(c). These di®erences

(a) (b) (c)

(d) (e) (f)

Fig. 2. (a)–(c) are 2D spatial frequency spectra obtained from their corresponding confocal microscope images shown in Figs. 1(a)–1(c),
respectively; (b)–(d) are 1D spatial frequency spectra (dot line) along the horizontal direction through the peaks of the 2D spectra in
(a)–(c), respectively, along with their corresponding ¯tted Gaussian distributions (solid line).

Combined SFSA with VRR for optical biopsy
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among the di®erent types of tissues can be more
distinctly seen from their 1D spatial frequency
distributions along horizontal direction as shown in
Figs. 2(d)–2(f), which are generated by integrating
spatial frequency distributions over the vertical
direction in the rectangle of solid line in Figs. 2(a)–
2(c), respectively. It is shown that spatial fre-
quency spectral pro¯le of the SCC type of brain
metastasis of lung cancer is wider than that of
normal tissue.

In order to utilize the di®erence of the width of
the spatial frequency spectra to di®erentiate the
types of tissues, the width of the spatial frequency
spectra needs to be quanti¯ed. The data shown in
Figs. 2(d)–2(f) were ¯tted using Gaussian distribu-
tion with zero mean:

gðxÞ ¼ 1

�
ffiffiffiffiffiffi
2�

p exp � ðx� �Þ2
�2

� �
; ð4Þ

where � is the mean or expectation of the distri-
bution (which is zero in all of our cases), and � is the
standard deviation which is the diversity or
\dispersion" of the data away from the mean. A
lower � indicates that the contributing frequencies
are close to the mean or zero frequency, whereas
higher � suggests that the data spread over a larger
range of frequencies. The ¯tted curves obtained by a
built-in function of Origin 8.5 are shown as solid
lines in Figs. 2(d)–2(f).

The di®erences in � among di®erent types
of tissues were used to evaluate the tissue types.
Figure 3(a) shows � of normal (circle) and cancer
(square) tissues, obtained by ¯tting the experimental

data to the Gaussian function in Eq. (4). An increase
in the spatial frequency range from normal to
cancerous tissues is seen in Fig. 3(a). The expanding
spectral range refers to more high-frequency com-
ponents. This is called \broadening of the signal".58

The spatial frequency spectra of cancerous tissues are
wider when compared with normal tissue. This may
provide a diagnostic criterion (�) for distinguishing
brain tumor tissues from normal tissue.

To evaluate the potential use of � as a criterion, a
support vector machine (SVM)59 is used to analyze
the alterations of � from normal to di®erent types of
cancerous tissues. In general, the SVM classi¯er is
determined by a number of \data points" with the
most e®ective discrimination, the support vectors
(SVs), which are usually chosen from those at the
boundary of the groups of data. In our study for
separating normal and cancerous tissues, the SVs
are chosen to be � values between �C

min � k and
�N
max þ k, where k is a self-de¯ned threshold value

for optimum, and �N
min and �N

max are the minimal �
for cancerous tissues and maximal � for normal
tissues, respectively. All the analyses of SVM are
performed in Matlab and were presented in detail in
our previous study.60 This standard will be used to
classify an unknown data set in the future study
when a large number of samples is available.

Classi¯cation of metastatic brain tumors from
normal brain tissues based on the SFSA–VRR data
by SVM classi¯ers: The SFSA with SVM analysis
on micrograph images is well consistent with the
VRR with SVM analysis. The results of both
methods were compared with gold standard reports.

(a) (b)

Fig. 3. (a) The � of the spatial frequency spectra of four normal brain tissues and 26 cancerous brain tissues. The solid line is
calculated using SVM to classify the two tissue types. (b) The ROC curve is used to evaluate the performance of the SVM model.

Y. Zhou et al.
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In a diagnostic test, the outcome may be a pos-
itive predictive value (disease) or a negative pre-
dictive value (healthy), which can be either true or
false. The sensitivity and speci¯city then can be
calculated as

Sensitivity ¼ #of True Positive

#of True Positiveþ#of False Negative
;

Specificity ¼ #of True Negative

#of True Negativeþ#of False positive
:

Diagnostic results of SVM classi¯er based on
VRR18: The brain metastasis of lung cancer and
normal brain tissue specimens were classi¯ed based
on the VRR spectra using SVM.10,59,61 The SVM
classi¯er used a Gaussian kernel and yielded diag-
nostic sensitivity, speci¯city and accuracy of 100%,
75.0% and 96.7%, respectively.

Diagnostic results of SVM classi¯er based on
SFSA: To test the potential of the diagnosis method
using �, the criterion (threshold) for classifying the
positive and negative groups in our study are de-
termined using the SVM on all the tissue samples. It
is shown that � ¼ 64:73 denoted by the solid line
accurately discriminates normal brain tissues from
cancerous brain tissues in Fig. 3(a). Based on the
two statistical measures, sensitivity and speci¯city,
the accuracy of the categorization of the tissues was
quanti¯ed. Subsequently, the receiver operating
characteristic (ROC) curve is also generated as
shown in Fig. 3(b) to evaluate the performance of
the classi¯cation criterion based on the � of the
spatial frequency for distinguishing normal and
cancerous brain tissues. The accuracy can be mea-
sured using the AUC (area under the ROC curve).

The sensitivity, speci¯city and the AUC values
for SVM classi¯cation using the � of the spatial
frequency for brain tissues are summarized in Table 1.

The sensitivity, speci¯city, accuracy and AUC
values in Table 1 demonstrate the excellent e±cacy
of SVM based on the spatial frequency as a prom-
ising diagnostic tool for brain cancer detection.

Figure 4 shows the change in the criterion � gen-
erated by SFSA method from normal to metastatic
brain tumor tissues of ADC and SCC. An increase
in � of the spatial frequency is observed from normal
to di®erent types of cancerous tissues. This may
provide an alternate diagnostic criterion for grading
brain tumor tissues. Identifying the primary meta-
static potential of cancer is critical in cancer de-
tection and staging. This study is highly relevant to
tumor grading by optical techniques and may serve
as a key step to predict the primary metastatic
potential of brain metastases. It helps in under-
standing the use of re°ectance micrographic images
and Raman techniques to identify potential meta-
static cancer using intact tissue specimens.

The SFSA–VRR results demonstrated consis-
tency with the histopathology diagnosis (Figs. 1(g)–
1(i)). Even though in this study, the classi¯cation
was performed based on the SFSA of the mi-
crographic images and VRR spectra separately, di-
agnostic information was observed using the
synchronously carried-out SFSA and VRR techni-
ques on the same sites. Therefore, this is a dual-
modal technique for cancer diagnosis. A new clas-
si¯er can be developed that combines the results of
SFSA and VRR in future studies for more robust
diagnosis.

4. Conclusion

VRR spectra demonstrate an array of biomarkers
(e.g., carotenoids, tryptophan, amide II, lipids and
proteins) functioning simultaneously in real time

Table 1. Evaluation of the performance of SVM classi¯cation
for distinguishing normal and cancerous brain tissues based on �.

Evaluated
components Sensitivity Speci¯city Accuracy AUC

Normal versus
cancer

88.5% 75.0% 86.7% 0.93

Fig. 4. The increase of � of the spatial frequency spectra as a
function of brain tissue type including normal brain tissue and
brain metastases from lung cancers: ADC and SCC.

Combined SFSA with VRR for optical biopsy
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based on which it provides a label-free technique for
di®erentiation of human brain normal tissues from
the brain metastases of lung cancers.

An SFSA criterion parameter, �, as a signature
indicator is obtained by SVM based on the width of
the Gaussian distribution ¯tted to the spatial fre-
quency spectra for di®erentiation of human normal
brain tissues from cancerous brain tissues. The
SFSA and VRR-combined method can provide the
results from simultaneous detections since micro-
graph images and VRR signals can be measured
synchronously.18,62 More information can be found
in Ref. 63. Based on this study, a new optical
pathological method based on the dual-modalities
of SFSA–VRR may be developed to improve the
accuracy of brain biopsy in neuropathology diag-
nosis and to guide brain surgery.
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